NV Chemicals Pure Magic # N.V. Chemicals (Aust) P/L Chemwatch: 4789-84 Version No: 4.1 Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements # Chemwatch Hazard Alert Code: 4 Issue Date: **10/12/2021** Print Date: **04/06/2024** L.GHS.AUS.EN.E # SECTION 1 Identification of the substance / mixture and of the company / undertaking #### **Product Identifier** | Product name | NV Chemicals Pure Magic | |-------------------------------|--| | Chemical Name | Not Applicable | | Synonyms | Not Available | | Proper shipping name | CORROSIVE LIQUID, BASIC, INORGANIC, N.O.S. (contains sodium hydroxide) | | Chemical formula | Not Applicable | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against # Details of the manufacturer or supplier of the safety data sheet | Registered company name | N.V. Chemicals (Aust) P/L | Re-Stox Business Supplies & Ranges Coffee | | |-------------------------|---|---|--| | Address | 24 Lisa Place Coolaroo VIC 3048 Australia | 14 Melba Avenue Victoria 3140 Australia | | | Telephone | +61 3 9351 1100 | +61 39738 7730 | | | Fax | +61 3 9351 1077 | Not Available | | | Website | http://www.nvchemicals.com.au/ | Not Available | | | Email | info@nvchemicals.com.au | gwilliams@restox.com.au | | # Emergency telephone number | Association / Organisation | N.V.Chemicals(Aust) P/L | Re-Stox Business Supplies & Ranges Coffee | | |-----------------------------------|-------------------------|---|--| | Emergency telephone numbers | 0411 387 097 | +61 409 866 355 | | | Other emergency telephone numbers | Not Available | Not Available | | #### **SECTION 2 Hazards identification** # Classification of the substance or mixture #### HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. # Chemwatch Hazard Ratings | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 0 | | | | Toxicity | 1 | | 0 = Minimum | | Body Contact | 4 | | 1 = Low | | Reactivity | 0 | | 2 = Moderate | | Chronic | 2 | | 3 = High
4 = Extreme | | Poisons Schedule | S5 | |-------------------------------|--| | Classification ^[1] | Skin Corrosion/Irritation Category 1A, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 2 | Chemwatch: 4789-84 Version No: 4.1 Page 2 of 18 **NV Chemicals Pure Magic** Issue Date: **10/12/2021**Print Date: **04/06/2024** Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI #### Label elements # Hazard pictogram(s) Signal word Danger # Hazard statement(s) | H314 | Causes severe skin burns and eye damage. | | |------|--|--| | H317 | May cause an allergic skin reaction. | | | H411 | Toxic to aquatic life with long lasting effects. | | #### Precautionary statement(s) Prevention | P260 | Do not breathe mist/vapours/spray. | |------|--| | P264 | Wash all exposed external body areas thoroughly after handling. | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | P273 | Avoid release to the environment. | | P272 | Contaminated work clothing should not be allowed out of the workplace. | #### Precautionary statement(s) Response | P301+P330+P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. | |----------------|--| | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P310 | Immediately call a POISON CENTER/doctor/physician/first aider. | | P302+P352 | IF ON SKIN: Wash with plenty of water. | | P363 | Wash contaminated clothing before reuse. | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | P391 | Collect spillage. | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | #### Precautionary statement(s) Storage P405 Store locked up. #### Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. # **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | | | | |------------|--|--------------------------------|--|--|--| | 1310-73-2 | 1-10 | sodium hydroxide | | | | | 119-36-8 | 1-10 | methyl salicylate | | | | | 92879-30-6 | 1-10 | (C8-10)alkyl D-glycopyranoside | | | | | 7732-18-5 | >60 <u>water</u> | | | | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4.
Classification drawn from C&L * EU IOELVs available | | | | | #### **SECTION 4 First aid measures** ### Description of first aid measures ### Eye Contact If this product comes in contact with the eyes: - ▶ Immediately hold eyelids apart and flush the eye continuously with running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Chemwatch: 4789-84 Page 3 of 18 Issue Date: 10/12/2021 Version No: 4.1 Print Date: 04/06/2024 #### **NV Chemicals Pure Magic** Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Immediately flush body and clothes with large amounts of water, using safety shower if available. Skin Contact Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor. If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. Inhalation Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. ▶ Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719) For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent Ingestion aspiration. Observe the patient carefully. ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay. #### Indication of any immediate medical attention and special treatment needed for salicylate intoxication: - · Pending gastric lavage, use emetics such as syrup of Ipecac or delay gastric emptying and absorption by swallowing a slurry of activated charcoal. Do not give ipecac after charcoal - · Gastric lavage with water or perhaps sodium bicarbonate solution (3%-5%). Mild alkali delays salicylate absorption from the stomach and perhaps slightly from the duodenum. - · Saline catharsis with sodium or magnesium sulfate (15-30 gm in water). - Take an immediate blood sample for an appraisal of the patient's acid-base status. A pH determination on an anaerobic sample of arterial blood is best. An analysis of the plasma salicylate concentration should be made at the same time. Laboratory controls are almost essential for the proper management of severe salicylism. - In the presence of an established acidosis, alkali therapy is essential, but at least in an adult, alkali should be withheld until its need is demonstrated by chemical analysis. The intensity of treatment depends on the intensity of acidosis. In the presence of vomiting, intravenous sodium bicarbonate is the most satisfactory of all alkali therapy. - · Correct dehydration and hypoglycaemia (if present) by the
intravenous administration of glucose in water or in isotonic saline. The administration of glucose may also serve to remedy ketosis which is often seen in poisoned children. - · Even in patients without hypoglycaemia, infusions of glucose adequate to produce distinct hyperglycaemia are recommended to prevent glucose depletion in the brain. This recommendation is based on impressive experimental data in animals. - · Renal function should be supported by correcting dehydration and incipient shock. Overhydration is not justified. An alkaline urine should be maintained by the administration of alkali if necessary with care to prevent a severe systemic alkalosis. As long as urine remains alkaline (pH above 7.5), administration of an osmotic diuretic such as mannitol or perhaps THAM is useful, but one must be careful to avoid hypokalaemia. Supplements of potassium chloride should be included in parenteral fluids. - · Small doses of barbiturates, diazepam, paraldehyde, or perhaps other sedatives (but probably not morphine) may be required to suppress extreme restlessness and convulsions. - · For hyperpyrexia, use sponge baths. The presence of petechiae or other signs of haemorrhagic tendency calls for a large Vitamin K dose and perhaps ascorbic acid. Minor transfusions may be necessary since bleeding in salicylism is not always due to a prothrombin effect. · Haemodialysis and haemoperfusion have proved useful in salicylate poisoning, as have peritoneal dialysis and exchange transfusions, but alkaline diuretic therapy is probably sufficient except in fulminating cases. [GOSSELIN, et.al.: Clinical Toxicology of Commercial Products] The mechanism of the toxic effect involves metabolic acidosis, respiratory alkalosis, hypoglycaemia, and potassium depletion. Salicylate poisoning is characterised by extreme acid-base disturbances, electrolyte disturbances and decreased levels of consciousness. There are differences between acute and chronic toxicity and a varying clinical picture which is dependent on the age of the patient and their kidney function. The major feature of poisoning is metabolic acidosis due to "uncoupling of oxidative phosphorylation" which produces an increased metabolic rate, increased oxygen consumption, increased formation of carbon dioxide, increased heat production and increased utilisation of glucose. Direct stimulation of the respiratory centre leads to hyperventilation and respiratory alkalosis. This leads to compensatory increased renal excretion of bicarbonate which contributes to the metabolic acidosis which may coexist or develop subsequently. Hypoglycaemia may occur as a result of increased glucose demand, increased renal excretion as well as intracellular movement of potassium. Salicylates competitively inhibit vitamin K dependent synthesis of factors II, VII, IX, X and in addition, may produce a mild dose dependent hepatitis. Salicylates are bound to albumin. The extent of protein binding is concentration dependent (and falls with higher blood levels). This, and the effects of acidosis, decreasing ionisation, means that the volume of distribution increases markedly in overdose as does CNS penetration. The extent of protein binding (50-80%) and the rate of metabolism are concentration dependent. Hepatic clearance has zero order kinetics and thus the therapeutic half-life of 2-4.5 hours but the half-life in overdose is 18-36 hours. Renal excretion is the most important route in overdose. Thus when the salicylate concentrations are in the toxic range there is increased tissue distribution and impaired clearance of the drug. HyperTox 3.0 http://www.ozemail.com.au/-ouad/SALI0001.HTA Treat symptomatically. For acute or short-term repeated exposures to highly alkaline materials: - Respiratory stress is uncommon but present occasionally because of soft tissue edema. - Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary. - Oxygen is given as indicated. - ▶ The presence of shock suggests perforation and mandates an intravenous line and fluid administration. - Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue. Alkalis continue to cause damage after exposure. INGESTION: ▶ Milk and water are the preferred diluents No more than 2 glasses of water should be given to an adult. - Neutralising agents should never be given since exothermic heat reaction may compound injury. - * Catharsis and emesis are absolutely contra-indicated. - * Activated charcoal does not absorb alkali. - * Gastric lavage should not be used. Chemwatch: 4789-84 Page 4 of 18 Issue Date: 10/12/2021 Version No: 4.1 Print Date: 04/06/2024 #### **NV Chemicals Pure Magic** Supportive care involves the following: - Withhold oral feedings initially. - If endoscopy confirms transmucosal injury start steroids only within the first 48 hours. - Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention. - Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia). SKIN AND EYE: ▶ Injury should be irrigated for 20-30 minutes. Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology] # **SECTION 5 Firefighting measures** # Extinguishing media The product contains a substantial proportion of water, therefore there are no restrictions on the type of extinguishing media which may be used. Choice of extinguishing media should take into account surrounding areas. Though the material is non-combustible, evaporation of water from the mixture, caused by the heat of nearby fire, may produce floating layers of combustible substances. In such an event consider: - ▶ foam. - dry chemical powder. - carbon dioxide. # Special hazards arising from the substrate or mixture | Fire Incompatibility | None known. | | | | | | |-------------------------|--|--|--|--|--|--| | Advice for firefighters | | | | | | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use fire fighting procedures suitable for surrounding area. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. | | | | | | | Fire/Explosion Hazard | The material is not readily combustible under normal conditions. However, it will break down under fire conditions and the organic component may burn. Not considered to be a significant fire risk. Heat may cause expansion or decomposition with violent rupture of containers. Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). May emit acrid smoke. Decomposes on heating and produces toxic fumes of: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. May emit corrosive fumes. | | | | | | | HAZCHEM | 2X | | | | | | # **SECTION 6 Accidental release measures** # Personal precautions, protective equipment and emergency procedures See section 8 # **Environmental precautions** See section 12 # Methods and material for containment and cleaning up | metrious and material for cont | | |--------------------------------|--| | Minor Spills | Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. Check regularly for spills and leaks. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. | | Major Spills | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing
apparatus. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. Chemwatch: 4789-84 Page 5 of 18 Version No: 4.1 #### **NV Chemicals Pure Magic** Issue Date: 10/12/2021 Print Date: 04/06/2024 #### **SECTION 7 Handling and storage** #### Precautions for safe handling - ▶ DO NOT allow clothing wet with material to stay in contact with skin - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - ▶ Use in a well-ventilated area. - WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material. - Avoid smoking, naked lights or ignition sources. - Avoid contact with incompatible materials. - ▶ When handling, **DO NOT** eat, drink or smoke - Keep containers securely sealed when not in use. - Avoid physical damage to containers.Always wash hands with soap and water after handling. - Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained # ▶ Store in original containers. - Keep containers securely sealed. - Store in a cool, dry, well-ventilated area. - Other information Safe handling - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks - Observe manufacturer's storage and handling recommendations contained within this SDS. - DO NOT store near acids, or oxidising agents - No smoking, naked lights, heat or ignition sources #### Conditions for safe storage, including any incompatibilities - ▶ Lined metal can, lined metal pail/ can. - Plastic pail. - Polyliner drum. - Packing as recommended by manufacturer. - Check all containers are clearly labelled and free from leaks. #### For low viscosity materials - Drums and jerricans must be of the non-removable head type. - ▶ Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.): - ▶ Removable head packaging; - ► Cans with friction closures and - low pressure tubes and cartridges may be used. Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. #### Storage incompatibility Suitable container - ▶ Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. - Avoid contact with copper, aluminium and their alloys. # SECTION 8 Exposure controls / personal protection # Control parameters #### Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|------------------|------------------|---------------|---------------|---------|---------------| | Australia Exposure Standards | sodium hydroxide | Sodium hydroxide | Not Available | Not Available | 2 mg/m3 | Not Available | #### **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |-------------------|---------------|---------------|---------------| | sodium hydroxide | Not Available | Not Available | Not Available | | methyl salicylate | 2.3 ppm | 25 ppm | 150 ppm | | Ingredient | Original IDLH | Revised IDLH | |--------------------------------|---------------|---------------| | sodium hydroxide | 10 mg/m3 | Not Available | | methyl salicylate | Not Available | Not Available | | (C8-10)alkyl D-glycopyranoside | Not Available | Not Available | | water | Not Available | Not Available | # Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |--------------------------------|-----------------------------------|----------------------------------| | methyl salicylate | E | ≤ 0.1 ppm | | (C8-10)alkyl D-glycopyranoside | D | > 0.01 to ≤ 0.1 mg/m³ | | (C8-10)alkyl D-glycopyranoside | D | > 0.01 to ≤ 0.1 mg/m³ | # Notes: Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. Chemwatch: **4789-84** Page **6** of **18** **NV Chemicals Pure Magic** Issue Date: 10/12/2021 Print Date: 04/06/2024 #### MATERIAL DATA Version No. 4.1 None assigned. Refer to individual constituents. #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances. If risk of overexposure exists, wear approved respirator. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. Provide adequate ventilation in warehouses and enclosed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|----------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s (50-
100 f/min) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-
200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-
500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion) | 2.5-10 m/s (500-
2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # Individual protection measures, such as personal protective equipment - Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure. - Chemical goggles. Whenever there is a danger of the material coming in contact with the eyes;
goggles must be properly fitted. [AS/NZS 1337.1, EN166 or national equivalent] - Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face - Alternatively a gas mask may replace splash goggles and face shields. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. Eye and face protection # Skin protection #### See Hand protection below # Hands/feet protection - ► Elbow length PVC gloves - When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. #### NOTE: - ► The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - · glove thickness and Chemwatch: 4789-84 Page 7 of 18 Issue Date: 10/12/2021 Version No: 4.1 Print Date: 04/06/2024 #### **NV Chemicals Pure Magic** dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161,10.1 or national equivalent) is recommended. When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. · Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: · Excellent when breakthrough time > 480 min · Good when breakthrough time > 20 min · Fair when breakthrough time < 20 min · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended **Body protection** See Other protection below Overalls PVC Apron. Other protection ▶ PVC protective suit may be required if exposure severe. #### Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: ▶ Eyewash unit. Ensure there is ready access to a safety shower. NV Chemicals Pure Magic | Material | СРІ | |-------------------|-----| | BUTYL | A | | NEOPRENE | A | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | SARANEX-23 | С | | SARANEX-23 2-PLY | С | | TEFLON | С | | VITON | С | | VITON/CHLOROBUTYL | С | ^{*} CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face
Respirator | Full-Face
Respirator | |------------------------------------|--|-------------------------|-------------------------| | up to 10 | 1000 | A-AUS /
Class1 P2 | - | | up to 50 | 1000 | - | A-AUS /
Class 1 P2 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | A-2 P2 | | up to 100 | 10000 | - | A-3 P2 | | 100+ | | | Airline** | - * Continuous Flow ** Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used ### **SECTION 9 Physical and chemical properties** Chemwatch: 4789-84 Page 8 of 18 Version No: 4.1 **NV Chemicals Pure Magic** Issue Date: 10/12/2021 Print Date: 04/06/2024 | Appearance | Dark brown highly alkaline liqu | id: mixes with water | | |--|---------------------------------|---|----------------| | Appearance | Dark brown highly alkaline liqu | id, filixes with water. | | | Physical state | Liquid | Relative density (Water = 1) | Not Available | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Applicable | | pH (as supplied) | >12 | Decomposition temperature (°C) | Not Applicable | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Applicable | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower
Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Not Applicable | | Vapour pressure (kPa) | Not Applicable | Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | # **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Reactivity | Gee Section / | | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 Toxicological information** # Information on toxicological effects | ntormation on toxicological en | | |--------------------------------|--| | Inhaled | Inhalation of alkaline corrosives may produce irritation of the respiratory tract with coughing, choking, pain and mucous membrane damage. Pulmonary oedema may develop in more severe cases; this may be immediate or in most cases following a latent period of 5-72 hours. Symptoms may include a tightness in the chest, dyspnoea, frothy sputum, cyanosis and dizziness. Findings may include hypotension, a weak and rapid pulse and moist rales. | | Ingestion | Ingestion of alkaline corrosives may produce immediate pain, and circumoral burns. Mucous membrane corrosive damage is characterised by a white appearance and soapy feel; this may then become brown, oedematous and ulcerated. Profuse salivation with an inability to swallow or speak may also result. Even where there is limited or no evidence of chemical burns, both the oesophagus and stomach may experience a burning pain; vomiting and diarrhoea may follow. The vomitus may be thick and may be slimy (mucous) and may eventually contain blood and shreds of mucosa. Epiglottal oedema may result in respiratory distress and asphyxia. Marked hypotension is symptomatic of shock; a weak and rapid pulse, shallow respiration and clammy skin may also be evident. Circulatory collapse may occur and, if uncorrected, may produce renal failure. Severe exposures may result in oesophageal or gastric perforation accompanied by mediastinitis, substemal pain, peritonitis, abdominal rigidity and fever. Although oesophageal, gastric or pyloric stricture may be evident initially, these may occur after weeks or even months and years. Death may be quick and results from asphyxia, circulatory collapse or aspiration of even minute amounts. Death may also be delayed as a result of perforation, pneumonia or the effects of stricture formation. Large oral doses of salicylates may cause mild burning pain in the throat, stomach and usually prompt vomiting. Several hours may elapse before the development of deep and rapid breathing, lassitude, anorexia, nausea, vomiting, thirst and occasional diarrhoea. Common derivatives of salicylates may cause mild burning pain in the throat, stomach and usually prompt vomiting. Several hours may elapse before the development of deep and rapid breathing, lassitude, anorexia, nausea, vomiting, thirst and occasional diarrhoea. Common derivatives of salicylate may cause mild burning pain in the throat, stomach and usually prompt vomiting. Several hours may elapse before the development of deep and rapid breathing, l | | Skin Contact | The material can produce severe chemical burns following direct contact with the skin. Skin contact with alkaline corrosives may produce severe pain and burns; brownish stains may develop. The corroded area may be soft, gelatinous and necrotic; tissue destruction may be deep. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | Eye | When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. | Chemwatch: 4789-84 Page 9 of 18 Version No: 4.1 #### **NV Chemicals Pure Magic** Issue Date: 10/12/2021 Print Date: 04/06/2024 Direct contact with alkaline corrosives may produce pain and burns. Oedema, destruction of the epithelium, corneal opacification and iritis may occur. In less severe cases these symptoms tend to resolve. In severe injuries the full extent of the damage may not be immediately apparent with late complications comprising a persistent oedema, vascularisation and corneal scarring, permanent opacity, staphyloma, cataract, symblepharon and loss of sight. Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There exists limited evidence that shows that skin contact with the material is capable either of inducing a sensitisation reaction in a significant number of individuals, and/or of producing positive response in experimental animals. Mild chronic salicylate intoxication, or "salicylism", may occur after repeated exposures to large doses. Symptoms include dizziness, tinnitus, deafness, sweating, nausea and vomiting, headache and mental confusion. Symptoms of more severe intoxication include hyperventilation, fever, restlessness, ketosis, and respiratory alkalosis and metabolic acidosis. Depression of the central nervous system may lead to coma, cardiovascular collapse and respiratory failure. Chronic exposure to the salicylates (o-hydroxybenzoates) may produce metabolic and central system disturbances or damage to the kidneys. Persons with pre-existing skin disorders, eye problems or impaired kidney function may be more susceptible to the effects of these substances. Certain individuals (atopics), notably asthmatics, exhibit significant hyper- sensitivity to salicylic acid derivatives. Reactions include urticaria and other skin eruptions, rhinitis and severe (even fatal) bronchospasm and dyspnea. Chronic exposure to the phydroxybenzoates (parabens) is associated with hypersensitivity reactions following application of these to the skin. Hypersensitivity reactions have also been reported following parenteral or oral administration. Cross-sensitivity occurs between the p-hydroxybenzoates Hypersensitivity reactions may include by acute bronchospasm, hives (urticaria), deep dermal wheals (angioneurotic oedema), running nose (rhinitis) and blurred vision. Anaphylactic shock and skin rash (non- thrombocytopenic purpura) may also occur. Any individual may be predisposed to such anti-body mediated reaction if other chemical agents have caused prior sensitisation (cross-sensitivity). | NV Chemicals Pure Magic | TOXICITY | IRRITATION | | |-------------------------|---|---|--| | | Not Available | Not Available | | | | TOXICITY | IRRITATION | | | | Dermal (rabbit) LD50: 1350 mg/kg ^[2] | Eye (rabbit): 0.05 mg/24h SEVERE | | | | Oral (Rabbit) LD50; 325 mg/kg ^[1] | Eye (rabbit):1 mg/24h SEVERE | | | sodium hydroxide | | Eye (rabbit):1 mg/30s rinsed-SEVERE | | | | | Eye:
adverse effect observed (irritating) ^[1] | | | | | Skin (rabbit): 500 mg/24h SEVERE | | | | | Skin: adverse effect observed (corrosive) ^[1] | | | | TOXICITY | IRRITATION | | | | Dermal (Guinea Pig) LD50: ~700 mg/kg ^[2] | Eye (rabbit): 500 mg/24 h - mild | | | methyl salicylate | Inhalation (Rat) LC50: >0.225 mg/l4h ^[1] | Eye: adverse effect observed (irreversible damage) ^[1] | | | | Oral (Guinea) LD50; 700 mg/kg ^[2] | Skin (rabbit): 500 mg/24 h - moderate | | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | | TOXICITY | IRRITATION | | | (C8-10)alkyl D- | Dermal (rabbit) LD50: >2000 mg/kg ^[2] | Not Available | | | glycopyranoside | Oral (Rat) LD50: >5000 mg/kg ^[2] | | | | | TOXICITY | IRRITATION | | | water | | | | Legend: Chronic 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances #### **NV Chemicals Pure Magic** gic Not available #### METHYL SALICYLATE Not irritating to human skin at concentrations of 8% in mineral oil* Not sensitising to human skin at concentrations of 8% in mineral oil* Not sensitising to guinea pig (Magnusson and Kligman method) * Not irritating to rabbits on ocular application * Ames test: negative* * Rhodia MSDS Adverse reactions to fragrances in perfumes and in fragranced cosmetic products include allergic contact dermatitis, irritant contact dermatitis, photosensitivity, immediate contact reactions (contact urticaria), and pigmented contact dermatitis. Airborne and connubial contact dermatitis occur. Intolerance to perfumes, by inhalation, may occur if the perfume contains a sensitising principal. Symptoms may vary from general illness, coughing, phlegm, wheezing, chest-tightness, headache, exertional dyspnoea, acute respiratory illness, hayfever, and other respiratory diseases (including asthma). Perfumes can induce hyper-reactivity of the respiratory tract without producing an IgE-mediated allergy or demonstrable respiratory obstruction. This was shown by placebo-controlled challenges of nine patients to "perfume mix". The same patients were also subject to perfume provocation, with or without a carbon filter mask, to ascertain whether breathing through a filter with active carbon would prevent symptoms. The patients breathed through the mouth, during the provocations, as a nose clamp was used to prevent nasal inhalation. The patient's earlier symptoms were verified; breathing through the carbon filter had no protective effect. The symptoms were not transmitted via the olfactory nerve but they may have been induced by trigeminal reflex via the respiratory tract or by the eyes. Cases of occupational asthma induced by perfume substances such as isoamyl acetate, limonene, cinnamaldehyde and benzaldehyde, tend to give persistent symptoms even though the exposure is below occupational exposure limits. Inhalation intolerance has also been produced in animals. The emissions of five fragrance products, for one hour, produced various combinations of sensory irritation, pulmonary irritation, decreases in expiratory airflow velocity as well as alterations of the functional Chemwatch: 4789-84 Page 10 of 18 Issue Date: 10/12/2021 Version No: 4.1 Print Date: 04/06/2024 #### **NV Chemicals Pure Magic** observational battery indicative of neurotoxicity in mice. Neurotoxicity was found to be more severe after mice were repeatedly exposed to the fragrance products, being four brands of cologne and one brand of toilet water. Contact allergy to fragrances is relatively common, affecting 1 to 3% of the general population, based on limited testing with eight common fragrance allergens and about 16 % of patients patch tested for suspected allergic contact dermatitis. Contact allergy to fragrance ingredients occurs when an individual has been exposed, on the skin, to a suffcient degree of fragrance contact allergens. Contact allergy is a life-long, specifically altered reactivity in the immune system. This means that once contact allergy is developed, cells in the immune system will be present which can recognise and react towards the allergen. As a consequence, symptoms, i.e. allergic contact dermatitis, may occur upon re-exposure to the fragrance allergen(s) in question. Allergic contact dermatitis is an inflammatory skin disease characterised by erythema, swelling and vesicles in the acute phase. If exposure continues it may develop into a chronic condition with scaling and painful fissures of the skin. Allergic contact dermatitis to fragrance ingredients is most often caused by cosmetic products and usually involves the face and/or hands. It may affect fitness for work and the quality of life of the individual. Fragrance contact allergy has long been recognised as a frequent and potentially disabling problem. Prevention is possible as it is an environmental disease and if the environment is modified (e.g. by reduced use concentrations of allergens), the disease frequency and severity will decrease Fragrance contact allergy is mostly non-occupational and related to the personal use of cosmetic products. Allergic contact dermatitis can be severe and widespread, with a significant impairment of quality of life and potential consequences for fitness for work. Thus, prevention of contact sensitisation to fragrances, both in terms of primary prevention (avoiding sensitisation) and secondary prevention (avoiding relapses of allergic contact dermatitis in those already sensitised), is an important objective of public health risk management Hands: Contact sensitisation may be the primary cause of hand eczema, or may be a complication of irritant or atopic hand eczema. The number of positive patch tests has been reported to correlate with the duration of hand eczema, indicating that long-standing hand eczema may often be complicated by sensitisation. Fragrance allergy may be a relevant problem in patients with hand eczema; perfumes are present in consumer products to which their hands are exposed. A significant relationship between hand eczema and fragrance contact allergy has been found in some studies based on patients investigated for contact allergy. However, hand eczema is a multi-factorial disease and the clinical significance of fragrance contact allergy in (severe) chronic hand eczema may not be clear. **Axillae Bilateral axillary** (underarm) dermatitis may be caused by perfume in deodorants and, if the reaction is severe, it may spread down the arms and to other areas of the body. In individuals who consulted a dermatologist, a history of such first-time symptoms was significantly related to the later diagnosis of perfume allergy. **Face** Facial eczema is an important manifestation of fragrance allergy from the use of cosmetic products (16). In men, after-shave products can cause an eczematous eruption of the beard area and the adjacent part of the neck and men using wet shaving as opposed to dry have been shown to have an increased risk of of being fragrance allergic. Irritant reactions (including contact urticaria): Irritant effects of some individual fragrance ingredients, e.g. citral are known. Irritant contact dermatitis from perfumes is believed to be common, but there are no existing investigations to substantiate this, Many more people complain about intolerance or rashes to perfumes/perfumed products than are shown to be allergic by testing. This may be due to irritant effects or inadequate diagnostic procedures. Fragrances may cause a dose-related contact urticaria of the non-immunological type (irritant contact urticaria). Cinnamal, cinnamic alcohol, and Myroxylon pereirae are well recognised causes of contact urticaria, but others, including menthol, vanillin and benzaldehyde have also been reported. The reactions to Myroxylon pereirae may be due to cinnamates. A relationship to delayed contact hypersensitivity was suggested, but no significant difference was found between a fragrance-allergic group and a control group in the frequency of immediate reactions to fragrance ingredients in keeping with a nonimmunological basis for the reactions seen. Pigmentary anomalies: The term "pigmented cosmetic dermatitis" was introduced in 1973 for what had previously been known as melanosis faciei feminae when the mechanism (type IV allergy) and causative allergens were clarified.. It refers to increased pigmentation, usually on the face/neck, often following sub-clinical contact dermatitis. Many cosmetic ingredients were patch tested at non-irritant concentrations and statistical evaluation showed that a number of fragrance ingredients were associated: jasmine absolute, ylang-ylang oil, cananga oil, benzyl salicylate, hydroxycitronellal, sandalwood oil, geraniol, geranium oil. Photo-reactions Musk ambrette produced a considerable number of allergic photocontact reactions (in which UV-light is required) in the 1970s and was later banned from use in the EU. Nowadays, photoallergic contact dermatitis is uncommon. Furocoumarins (psoralens) in some plant-derived fragrance ingredients caused phototoxic reactions with erythema followed by hyperpigmentation resulting in Berloque dermatitis. There are now limits for the amount of furocoumarins in fragrance products. Photooxic reactions still occur but are rare. General/respiratory: Fragrances are volatile and therefore, in addition to skin exposure, a perfume also exposes the eyes and naso-respiratory tract. It is estimated that 2-4% of the adult population is affected by respiratory or eye symptoms by such an exposure. It is known that exposure to fragrances may exacerbate pre-existing asthma. Asthma-like symptoms can be provoked by sensory mechanisms. In an epidemiological investigation, a significant association was found between respiratory complaints related to fragrances and contact allergy to fragrance ingredients, in addition to hand eczema, which were
independent risk factors in a multivariate analysis. Fragrance allergens act as haptens, i.e. low molecular weight chemicals that are immunogenic only when attached to a carrier protein. However, not all sensitising fragrance chemicals are directly reactive, but require previous activation. A prehapten is a chemical that itself is non- or low-sensitising, but that is transformed into a hapten outside the skin by simple chemical transformation (air oxidation, photoactivation) and without the requirement of specific enzymatic systems. A prohapten is a chemical that itself is non- or low-sensitising but that is transformed into a hapten in the skin (bioactivation) usually via enzyme catalysis. It is not always possible to know whether a particular allergen that is not directly reactive acts as a prehapten or as a prohapten, or both, because air oxidation and bioactivation can often give the same product (geraniol is an example). Some chemicals might act by all three pathways. #### **Prohaptens** Compounds that are bioactivated in the skin and thereby form haptens are referred to as prohaptens. In the case of prohaptens, the possibility to become activated is inherent to the molecule and activation cannot be avoided by extrinsic measures. Activation processes increase the risk for cross-reactivity between fragrance substances. Crossreactivity has been shown for certain alcohols and their corresponding aldehydes, i.e. between geraniol and geranial (citral) and between cinnamyl alcohol and cinnamal. The human skin expresses enzyme systems that are able to metabolise xenobiotics, modifying their chemical structure to increase hydrophilicity and allow elimination from the body. Xenobiotic metabolism can be divided into two phases: phase I and phase II. Phase I transformations are known as activation or functionalisation reactions, which normally introduce or unmask hydrophilic functional groups. If the metabolites are sufficiently polar at this point they will be eliminated. However, many phase I products have to undergo subsequent phase II transformations, i.e. conjugation to make them sufficiently water soluble to be eliminated. Although the purpose of xenobiotic metabolism is detoxification, it can also convert relatively harmless compounds into reactive species. Cutaneous enzymes that catalyse phase I transformations include the cytochrome P450 mixed-function oxidase system, alcohol and aldehyde dehydrogenases, monoamine oxidases, flavin-containing monooxygenases and hydrolytic enzymes. Acyltransferases, glutathione S-transferases, UDPglucuronosyltransferases and sulfotransferases are examples of phase II enzymes that have been shown to be present in human skin These enzymes are known to catalyse both activating and deactivating biotransformations, but the influence of the reactions on the allergenic activity of skin sensitisers has not been studied in detail. Skin sensitising prohaptens can be recognised and grouped into chemical classes based on knowledge of xenobiotic bioactivation reactions, clinical observations and/or in vivo and in vitro studies of sensitisation potential and chemical reactivity. QSAR prediction: The relationships between molecular structure and reactivity that form the basis for structural alerts are based on well established principles of mechanistic organic chemistry. Examples of structural alerts are aliphatic aldehydes (alerting to the possibility of sensitisation via a Schiff base reaction with protein amino groups), and alpha,beta-unsaturated carbonyl groups, C=C-CO- (alerting to the possibility of sensitisation via Michael addition of protein thiol groups). Prediction of the sensitisation potential of compounds that can act via abiotic or metabolic activation (pre- or prohaptens) is more complex compared to that of compounds that act as direct haptens without any activation. The autoxidation patterns can differ due to differences in the stability of the intermediates formed, e.g. it has been shown that autoxidation of the structural isomers linalool and geraniol results in different major haptens/allergens. Moreover, the complexity of the prediction increases further for those compounds that can act both as pre- and prohaptens. In such cases, the impact on the sensitisation potency depends on the degree of abiotic activation (e.g. autoxidation) in relation to the metabolic activation For certain benzyl derivatives: Chemwatch: 4789-84 Page 11 of 18 Issue Date: 10/12/2021 Version No: 4.1 Print Date: 04/06/2024 #### **NV Chemicals Pure Magic** All members of this group (benzyl, benzoate and 2-hydroxybenzoate (salicylate) esters) contain a benzene ring bonded directly to an oxygenated functional group (aldehyde or ester) that is hydrolysed and/or oxidised to a benzoic acid derivative. As a stable animal metabolite, benzoic acid derivatives are efficiently excreted primarily in the urine. These reaction pathways have been reported in both aquatic and terrestrial species. The similarity of their toxicologic properties is a reflection their participation in these common metabolic pathways. In general, members of this group are rapidly absorbed through the gastrointestinal tract, metabolised primarily in the liver, and excreted in the urine either unchanged or as conjugates of benzoic acid derivatives At high doses, conjugation pathways (e.g., glycine) may be saturated; in which case, free benzoic acid is excreted unchanged. Absorption, distribution and excretion studies have been conducted several members of this group and structural relatives. These substances exhibit remarkably similar patterns of pharmacokinetics and metabolism. The benzyl, benzoate, and 2-hydroxybenzoate (salicylate) esters which comprise this category are hydrolysed to the corresponding alcohols and carboxylic acids. The benzyl alcohol and benzaldehyde derivatives are oxidised to the corresponding benzoic acid derivatives that are subsequently excreted unchanged or as glycine or glucuronic acid conjugates. If methoxy or phenolic functional groups are present on the benzene ring, additional minor metabolic options become available. O-demethylation yields the corresponding phenol that is subsequently excreted as the glucuronic acid or sulfate conjugates. At high dose levels, gut microflora may act to produce minor amounts of reduction metabolites. Acute toxicity: Oral LD50 values ranged from 887 to greater than 5,000 mg/kg bw demonstrating the low to moderate toxicity of these compounds. Repeat dose toxicity: Overall, numerous repeat-dose studies using various routes of exposure have been conducted in different animal species with members of this chemical category or their close structural relatives. It is important to note that all the benzyl derivatives in this category are eventually metabolised to a common metabolite, benzoic acid, and are rapidly excreted in the urine as benzoic acid or as its glycine, sulfate, or glucuronic acid conjugate. For this reason, the repeat-dose studies currently available provide adequate support for the safety of the benzyl derivatives. Moreover, the levels at which no adverse effects were reported were sufficiently high to accommodate any potential differences among the members of the category. Reproductive toxicity: Several reproductive toxicity studies have been conducted with representatives of this group and produced no evidence of reproductive toxicity As with the repeat-dose studies, the benzyl derivatives generally follow the similar metabolic pathways and the studies conducted provide an adequate database for this endpoint. In addition, the dose levels tested provide margins of safety large enough to accommodate any differences among the group. **Developmental toxicity:** Representative substances from this group were tested for developmental toxicity with uniform results, and indicated no teratogenic potential in the absence of maternal toxicity. Again, the representative substances undergo similar metabolism to the entire benzyl derivative group and therefore, provide an adequate representation for this endpoint. **Genetic toxicity:** Overall, *in vitro* and *in vivo* genotoxicity studies have been conducted with substances representing the structural characteristics of the benzyl category. The results of these studies were predominantly negative demonstrating a low order of genotoxic potential.. Limited positive and/or equivocal findings have been reported for 3 aldehydes and benzyl acetate, but, in most cases, other studies of the same endpoint with same test substance show no activity. Most importantly, *in vivo* studies on benzaldehyde derivatives and closely related benzyl esters have all yielded negative results. These negative *in vivo* genotoxicity assays are supported by the lack of tumorigenicity in chronic animal studies with representatives of this group. Data available for more than 100 *in vitro* genotoxicity assays for 9 members of the category and five metabolic precursors or metabolites of benzyl derivatives indicate a low genotoxic potential for members of this chemical category Equivocal results have been reported mainly for aromatic aldehydes in the MLA and ABS assays. A member or analogue of a group of hydroxy and alkoxy-substituted benzyl derivatives generally regarded as safe (GRAS) based in part on their self-limiting properties as flavouring substances in food; their rapid absorption. metabolic detoxification, and excretion in humans and other animals, their low level of flavour use, the wide margin of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from chronic and subchronic studies and the lack of significant genotoxic and mutagenic potential. This evidence of safety is supported by the fact that the intake of benzyl derivatives as natural components of traditional foods is greater than the intake as intentionally added flavouring substances. All members of this group are aromatic primary
alcohols, aldehydes, carboxylic acids or their corresponding esters or acetals. The structural features common to all members of the group is a primary oxygenated functional group bonded directly to a benzene ring. The ring also contains hydroxy or alkoxy substituents. The hydroxy- and alkoxy- substituted benzyl derivatives are raidly absorbed by the gastrointestinal tract, metabolised in the liver to yield benzoic acid derivatives and excreted primarily in the urine either unchanged or conjugated. It is expected than aromatic esters and acetals will be hydrolysed in vivo through the catalytic activity of carboxylesterases, (A-esterases), Acetals hydrolyse uncatalysed in gastric juices and intestinal fluids to yield acetaldehydes. Substituted benzyl esters and benzaldehyde acetals are hydrolysed to the corresponding alcoholic alcohols and carboxylic acid. In general hydroxy- and alkoxy- derivatives of benzaldehyde and benzyl alcohol are oxidised to the corresponding benzoic aid derivatives and, to a lesser extent reduced to corresponding benzyl alcohol derivatives. Following conjugation these are excreted in the urine. Benzyl alcohol derivatives may also be reduced in gut microflora to toluene derivatives. Flavor and Extract Manufacturers Association (FEMA) The Research Institute for Fragrance Materials (RIFM) Expert Panel study of fragrance salicylates concluded. The salicylates are well absorbed by the oral route, and oral bioavailability is assumed to be 100%. Absorption by the dermal route in humans is more limited with bioavailability in the range of 11.8-30.7%. The salicylates are expected to undergo extensive hydrolysis, primarily in the liver, to salicylic acid which is conjugated with either glycine or glucuronide and is excreted in the urine as salicyluric acid and acyl and phenolic glucuronides. The hydrolyzed side chains are metabolized by common and well-characterized metabolic pathways leading to the formation of innocuous end products. The expected metabolism of the salicylates does not present toxicological concerns. The acute dermal toxicity of the salicylates is very low, with LD50 values in rabbits reported to be greater than 5000 mg/kg body weight. The acute oral toxicity of the salicylates is moderate, with toxicity generally decreasing with increasing size of the ester R-group and with LD50's between 1000 and >5000 g/kg. In dermal subchronic toxicity studies, extreme doses of methyl salicylate (5 g/kg body weight/day) possibly were nephrotoxic but the data were minimal. The subchronic oral NOAEL is concluded to be 50 mg/kg body weight/day. Genetic toxicity data, for methyl salicylate, a few other salicylates and for structurally related alkyl- and alkoxy-benzyl derivatives are negative for genotoxicity. Given the metabolism of salicylate and the evidence that they are non-genotoxic, it can be concluded that the salicylates are without carcinogenic potential. The reproductive and developmental toxicity data on methyl salicylate demonstrate that high, maternally toxic doses result in a pattern of embryotoxicity and teratogenesis similar to that characterized for salicylic acid. At concentrations likely to be encountered by humans through the use of the salicylates as fragrance ingredients, these chemicals are considered to be non-irritating to the skin. The salicylates (with the exception of benzyl salicylate) in general have no or very limited skin sensitization potential. The salicylates are non-phototoxic and have no photoirritant or photoallergenic activity The use of the salicylates in fragrances produces low levels of exposure relative to doses that elicit adverse systemic effects in laboratory animals exposed by the dermal or oral route. Based on NOAEL values of 50 mg/kg body weight/day identified in the subchronic and the chronic toxicity studies, a margin of safety for systemic exposure of humans to the individual salicylates in cosmetic products, may be calculated to range from 125 to 2,500,000 (depending upon the assumption of either 12–30% or 100% bioavailability following dermal application) times the maximum daily exposure. The acute dermal toxicity of the salicylates is very low. Rabbit dermal LD50 values have been reported to be >5000 mg/kg body weight for 15 of the 16 salicylates tested, findings likely related to the limited degree of dermal absorption, the retention of salicylate in the skin, and the #### **NV Chemicals Pure Magic** Issue Date: **10/12/2021**Print Date: **04/06/2024** relatively moderate toxicity of salicylic acid itself upon systemic exposure (i.e., oral LD50 value of 891 mg/kg body weight in rats). Overall, the acute oral toxicity of the salicylates is moderate, with toxicity generally decreasing with increasing size of the ester R-group. For the longer carbon chain salicylates, acute oral LD50 s range from 1320 to >5000 mg/kg body weight. The acute oral toxicity of the unsaturated salicylates is likewise low to moderate with rat oral LD50 s in the 3200 to >5000 mg/kg body weight range as are the acute oral toxicities of the aromatic salicylates (1300 to >5000 mg/kg body weight). The 17 compounds assessed in this report include the core salicylate moiety that upon hydrolysis yield salicylic acid and the alcohol of the corresponding alkyl, alkenyl, benzyl, phenyl, phenethyl, etc. side chain. This is consistent with information on other alkyl- and alkoxy- benzyl derivatives whereby aromatic esters are hydrolyzed in vivo by carboxylesterases, or esterases, especially the A-esterases. Potential differences in the metabolism of the individual salicylates would be related to the manner in which the hydrolyzed side chain undergoes further oxidation/reduction and/or conjugation reactions. Salicylic acid undergoes metabolism primarily in the liver. At low, non-toxic doses, approximately 80% of salicylic acid is further metabolized in the liver via conjugation with glycine and subsequent formation of salicyluric acid. For each of the salicylates, following hydrolysis to salicylic acid, the resulting side chains, hydroxylated alkyl, alkenyl, and phenyl moieties, could be expected to be further metabolized. In the case of the alcohols formed following hydrolysis. Further metabolism would result in the formation of the corresponding aldehydes and acids, with eventual degradation to CO2 by the fatty acid pathway and the tricarboxylic acid cycle. The secondary alcohols formed by hydrolysis of isobutyl and isoamyl salicylate, would primarily be conjugated with glucuronic acid and excreted. They could also interconvert to the corresponding ketones. Salicylates bearing alkenyl side chains, may undergo epoxidation and subsequent hydroxylation at points of unsaturation. However, since both the alkyl and alkenyl side chains would be hydroxylated at one terminus following hydrolysis of the corresponding salicylate, a significant proportion of these hydrolysis products would be excreted in the urine precluding further metabolism and epoxidation. In the case of hydrolysis of the salicylates containing aromatic side chains, phenyl salicylate and benzyl salicylate, phenol and benzyl alcohol, respectively, would be formed. Salicylates were potent and selective inhibitors for AKR1C1 enzymes , a family of aldo-keto reductases implicated in biosynthesis, intermediary metabolism and detoxification. #### (C8-10)ALKYL D-GLYCOPYRANOSIDE for (C9-11)alkyl D-glycopyranoside Alkyl glycosides (syn: alkyl polyglucosides, alkyl polyglycosides, APGs) are considered non-irritating to skin, but irritating to eyes at very high concentrations. A general classification of a 65% C8 alkyl glycoside solution according to the Substance Directive 67/548/EEC is Irritating (Xi) with the risk phrase R41 (Risk of serious damage to the eyes) or R36 (Irritating to the eyes) (Akzo Nobel 1998). #### Acute toxicity: In single dose dermal studies with caprylyl/capryl glucoside and C10-16 alkyl glucoside (both 50% a.i., n:1.6) in rabbits, the LD50 was greater than the 2000 mg/kg dose administered. In oral studies with the same test substances, none of the mice dosed with 2000 mg/kg caprylyl glucoside and none of the rats dosed with 5000 mg/kg C10-16 alkyl glucoside died during the study. #### Ocular: In system studies for ocular irritation, the ocular irritation potential of decyl, lauryl, C10-16 alkyl, and coco-glucosides was non to slightly irritating and of caprylyl/ capryl glucoside was highly irritating. In a HET-CAM study with APG of varying proportions of alkyl chain length, the ocular irritation potential increased with the increased proportion of shorter-chain APGs. In studies using rabbits, neutralized lauryl glucoside produced slight ocular reactions. Caprylyl/ capryl glucoside was severely irritating to rabbit eyes when tested undiluted; the irritation threshold value was 10% for 30% a.i.caprylyl/capryl glucoside and 5% for 60% a.i. caprylyl/capryl glucoside. #### Dermal In an in vitro dermal absorption study using human skin samples, the mean absorbed dose of 10% caprylgl/ capryl glucoside was 0.01%. APGs of varying chain length (C8/10 to C12/16; 15-70% a.i.) are potentially irritating with irritation potential decreasing with increasing chain length, and, independent of the degree of polymerisation, the irritation was concentration-dependent. The primary dermal irritation indices (PDIIs) ranged from 0.0 to 4.6 in rabbits. (A PDII of 2 was considered a positive responder). In clinical studies, the dermal irritation of decyl, lauryl, and coco-glucosides was evaluated in epicutaneous patch (2.0% a.i.) and soap chamber tests (1.0% a.i.), and decyl glucoside was evaluated in a single insult occlusive patch test SIOPT (0.5% a.i.). At most, these ingredients were slightly irritating #### Ingestion: In an oral study in which female mice were dosed by gavage with a 5% aq. solution of caprylyl [U-14C]glucoside, the highest levels of radioactivity at 2 h after dosing were found in the stomach, intestines,
liver, and kidney. The radioactivity in the stomach was primarily unchanged substrate, while only a trace amount found in the liver was unchanged. Labeled glucose was found in all of these organs. In a feeding study in rats in which dietary sucrose was replaced with 10 or 20% ethyl glucoside for 39 days, 60-90% of the ingested ethyl glucoside was recovered in the urine. #### Repeat dose toxicity: In 2-wk repeated dose dermal studies in rabbits with 60% active caprylyl/capryl glucoside, occlusive applications produced testicular effects, while non-occlusive application did not. In the two occlusive studies, one with 0.09 and 1.8 g a.i./kg and the other with 0.14-1.25 g a.i./kg, an NOEL for testicular effects could not be established. In the non-occlusive study, the NOEL for systemic toxicity was 0.18 g a.i./kg caprylyl/capryl glucoside. Severe dermal irritation was observed in both occlusive studies, while slight to moderate irritation was reported in the non-occlusive study. Dermal application of 60% active caprylyl/capryl glucoside, 0.9-1.8 g a.i./kg, under occlusive conditions may affect the testes and accessory sex glands of rabbits; however, it was not clear if the effects were test-article related or due to stress of the occlusive procedure and resulting irritation and weight loss. Lauryl glucoside, 100-1000 mg/kg by gavage, did not produce adverse reproductive or developmental effects. Lauryl glucoside, 0.1-10,000 nmol, did not have any effects in in vitro oestrogenicity assays In oral repeated dose toxicity studies, moderately-dilated renal tubules were observed in 3 of 6 rats fed 20% ethyl glucoside for 39 days, but in none of the rats fed 10% ethyl glucoside. Kidney weights were statistically significantly increased in the test animals. In rats dosed orally with 250-1000 mg/kg C12/16 APG for 13 wks, reversible irritation and ulceration of the stomach mucosa was observed, but there was no systemic toxicity reported for any group. #### Mutagenicity: Alkyl polyglucoses (polyglycoses; APGs) (chain length not specified), tested at 8-500 ug/l and 11-900 ug/plate in distilled water, were not mutagenic in Ames tests with or without metabolic activation. C10-16 APG, tested at concentrations of <= 160 ug/ml with and without metabolic activation, was not clastogenic. #### Sensitisation: Glucosides with alkyl chain lengths ranging from C8-C10 to >C18, as well as a C18 branched glucoside, were evaluated in both the guinea pig maximisation test (GPMT), at concentrations of 1.25-10% for intradermal induction, 5-100% for epidermal induction, and 2.5-50% for challenge, and the local lymph node assay (LLNA) at concentrations of 1.25-50%. None of the glucosides tested were irritants or sensitisers in the GPMT, but the LLNA indicated that one C12-C18 glucoside, C14 glucoside, and C18 branched glucoside may cause skin sensitization at concentrations of 8.4%, 5.9%, and 0.43%, respectively. The sensitization potential of C12/16 APG was evaluated in studies in guinea pigs using the Buehler method (test concentrations of 20%) and the Magnusson-Kligman protocol (1, 60, and 10% used for intracutaneous induction, epidermal induction, and epidermal challenge respectively). C12/16 APG was not a sensitiser in the Buehler or Magnusson-Kligman studies. In clinical testing, the sensitization potential of 0.5, 0.75, and 1.8% a.i. decyl glucoside (in formulation), 5% a.i. aq. decyl and lauryl glucoside, and 1% a.i. aq. coco-glucoside was evaluated in Human Repeat Insult Patch Tests (HRIPTs). These ingredients were not irritating or sensitising. **NV Chemicals Pure Magic** Issue Date: 10/12/2021 Print Date: 04/06/2024 CIR Expert Panel Meeting, September 2011 The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis **SODIUM HYDROXIDE &** is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely METHYL SALICYLATE reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration. The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact **METHYL SALICYLATE & (C8**urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation 10)ALKYL Dpotential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance GLYCOPYRANOSIDE which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested (C8-10)ALKYL D-**GLYCOPYRANOSIDE &** No significant acute toxicological data identified in literature search. WATER **Acute Toxicity** Carcinogenicity Skin Irritation/Corrosion Reproductivity Serious Eve STOT - Single Exposure Damage/Irritation Legend: STOT - Repeated Exposure **Aspiration Hazard** 🗶 – Data either not available or does not fill the criteria for classification 💞 – Data available to make classification # **SECTION 12 Ecological information** Respiratory or Skin sensitisation Mutagenicity # Toxicity | NV Chemicals Pure Magic | Endpoint | Test Duration (hr) | Species | Value | Source | |------------------------------------|------------------|--------------------|-------------------------------|---------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | LC50 | 96h | Fish | 144-
267mg/l | 4 | | sodium hydroxide | EC50 | 48h | Crustacea | 34.59-
47.13mg/l | 4 | | | EC50(ECx) | 48h | Crustacea | 34.59-
47.13mg/l | 4 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | LC50 | 96h | Fish | 19.8mg/l | 2 | | methyl salicylate | EC50 | 72h | Algae or other aquatic plants | 1.1mg/l | 2 | | | EC50 | 48h | Crustacea | 28mg/l | 2 | | | NOEC(ECx) | 72h | Algae or other aquatic plants | 0.79mg/l | 2 | | (C8-10)alkyl D-
glycopyranoside | Endpoint | Test Duration (hr) | Species | Value | Source | | | Not
Available | Not Available | Not Available | Not
Available | Not
Availab | | | Endpoint | Test Duration (hr) | Species | Value | Source | | water | Not
Available | Not Available | Not Available | Not
Available | Not
Availab | (Japan) - Bioconcentration Data 8, Vendor Data Version No: 4.1 #### **NV Chemicals Pure Magic** Issue Date: 10/12/2021 Print Date: 04/06/2024 Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Prevent, by any means available, spillage from entering drains or water courses DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-------------------|-------------------------|------------------| | sodium hydroxide | LOW | LOW | | methyl salicylate | LOW | LOW | | water | LOW | LOW | #### Bioaccumulative potential | Ingredient | Bioaccumulation | | |-------------------|------------------------|--| | sodium hydroxide | LOW (LogKOW = -3.8796) | | | methyl salicylate | LOW (LogKOW = 2.55) | | #### Mobility in soil | Ingredient | Mobility | | |-------------------|-----------------------|--| | sodium hydroxide | LOW (Log KOC = 14.3) | | | methyl salicylate | LOW (Log KOC = 128.2) | | #### **SECTION 13 Disposal considerations** #### Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - Reuse - Recycling - Disposal (if all else fails) #### Product / Packaging disposal contaminated, it may be possible to reclaim the
product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible. - ▶ Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - ▶ Treat and neutralise at an approved treatment plant. - ▶ Treatment should involve: Neutralisation with suitable dilute acid followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. ### **SECTION 14 Transport information** # **Labels Required** #### **Marine Pollutant** #### **HAZCHEM** 2X # Land transport (ADG) | ' ' ' | | | | |----------------------------------|----------------------------|--|--| | 14.1. UN number or ID number | 3266 | | | | 14.2. UN proper shipping name | CORROSIVE LIQUID, | BASIC, INORGANIC, N.O.S. (contains sodium hydroxide) | | | 14.3. Transport hazard class(es) | Class
Subsidiary Hazard | 8 Not Applicable | | | 14.4. Packing group | II | | | Page **15** of **18** Issue Date: 10/12/2021 Print Date: 04/06/2024 **NV Chemicals Pure Magic** | 14.5. Environmental hazard | Environmentally hazardous | | |------------------------------------|-------------------------------------|-----| | 14.6. Special precautions for user | Special provisions Limited quantity | 1 L | | Air transport (ICAO-IATA / DGF | R) | | | | |------------------------------------|--|---------------------------|---------|--| | 14.1. UN number | 3266 | | | | | 14.2. UN proper shipping name | Corrosive liquid, basic, inorganic, n.o.s. * (contains sodium hydroxide) | | | | | | ICAO/IATA Class | 8 | | | | 14.3. Transport hazard class(es) | ICAO / IATA Subsidiary Hazard | Not Applicable | | | | Gladdical | ERG Code | 8L | | | | 14.4. Packing group | Ш | | | | | 14.5. Environmental hazard | Environmentally hazardous | Environmentally hazardous | | | | | Special provisions | | A3 A803 | | | | Cargo Only Packing Instructions | | 855 | | | | Cargo Only Maximum Qty / Pack | | 30 L | | | 14.6. Special precautions for user | Passenger and Cargo Packing Instructions | | 851 | | | | Passenger and Cargo Maximum Qty / Pack | | 1 L | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y840 | | | | Passenger and Cargo Limited Maximum Qty / Pack | | 0.5 L | | # Sea transport (IMDG-Code / GGVSee) | 14.1. UN number | 3266 | | | |------------------------------------|--|------------------------|--| | 14.2. UN proper shipping name | CORROSIVE LIQUID, BASIC, INORGANIC, N.O.S. (contains sodium hydroxide) | | | | 14.3. Transport hazard class(es) | IMDG Class 8 IMDG Subsidiary Hazard Not Applicable | | | | 14.4. Packing group | II | | | | 14.5 Environmental hazard | Marine Pollutant | | | | 14.6. Special precautions for user | EMS Number Special provisions Limited Quantities | F-A, S-B
274
1 L | | # 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--------------------------------|---------------| | sodium hydroxide | Not Available | | methyl salicylate | Not Available | | (C8-10)alkyl D-glycopyranoside | Not Available | | water | Not Available | #### 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |--------------------------------|---------------| | sodium hydroxide | Not Available | | methyl salicylate | Not Available | | (C8-10)alkyl D-glycopyranoside | Not Available | | water | Not Available | # **SECTION 15 Regulatory information** # Safety, health and environmental regulations / legislation specific for the substance or mixture #### sodium hydroxide is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C Chemwatch: 4789-84 Version No: 4.1 #### **NV Chemicals Pure Magic** Issue Date: **10/12/2021**Print Date: **04/06/2024** Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australian Inventory of Industrial Chemicals (AIIC) #### methyl salicylate is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 3 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) #### (C8-10)alkyl D-glycopyranoside is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) #### water is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) #### **Additional Regulatory Information** Not Applicable #### **National Inventory Status** | National Inventory | Status | | |---|--|--| | Australia - AIIC / Australia Non-
Industrial Use | Yes | | | Canada - DSL | No ((C8-10)alkyl D-glycopyranoside) | | | Canada - NDSL | No (sodium hydroxide; methyl salicylate; (C8-10)alkyl D-glycopyranoside; water) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS /
NLP | Yes | | | Japan - ENCS | No ((C8-10)alkyl D-glycopyranoside) | | | Korea - KECI | No ((C8-10)alkyl D-glycopyranoside) | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | No ((C8-10)alkyl D-glycopyranoside) | | | USA - TSCA | No ((C8-10)alkyl D-glycopyranoside) | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | No ((C8-10)alkyl D-glycopyranoside) | | | Vietnam - NCI | Yes | | | Russia - FBEPH | No ((C8-10)alkyl D-glycopyranoside) | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | #### **SECTION 16 Other information** | Revision Date | 10/12/2021 | |---------------|------------| | Initial Date | 01/11/2009 | #### **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|--| | 3.1 | 01/11/2019 | One-off system update. NOTE: This may or may not change the GHS classification | | 4.1 | 10/12/2021 | Classification change due to full database hazard calculation/update. | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** - PC TWA: Permissible Concentration-Time Weighted Average - ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit - ► IARC: International Agency for Research on Cancel - ▶ ACGIH: American Conference of Governmental Industrial Hygienists - ▶ STEL: Short Term Exposure Limit - ► TEEL: Temporary Emergency Exposure Limit。 - ▶ IDLH: Immediately Dangerous to Life or Health Concentrations - ▶ ES: Exposure Standard - ▶ OSF: Odour Safety Factor - NOAEL: No Observed Adverse Effect Level - ▶ LOAEL: Lowest Observed Adverse Effect Level - ► TLV: Threshold Limit Value Page 17 of 18 Issue Date: 10/12/2021 Chemwatch: 4789-84 Version No: 4.1 Print Date: 04/06/2024 #### **NV Chemicals Pure Magic** ▶ LOD: Limit Of Detection ▶ OTV: Odour Threshold Value ▶ BCF: BioConcentration Factors BEI: Biological Exposure IndexDNEL: Derived No-Effect Level ▶ PNEC: Predicted no-effect concentration - ▶ AllC: Australian Inventory of Industrial Chemicals - DSL: Domestic Substances List NDSL: Non-Domestic Substances List - ▶ IECSC: Inventory of Existing Chemical Substance in China - ▶ EINECS: European INventory of Existing Commercial chemical Substances - ▶ ELINCS: European List of Notified Chemical Substances - NLP: No-Longer Polymers - ▶ ENCS: Existing and New Chemical Substances Inventory - ▶ KECI: Korea Existing Chemicals Inventory - ▶ NZIoC: New Zealand Inventory of Chemicals - ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances - ► TSCA: Toxic Substances Control Act - ► TCSI:
Taiwan Chemical Substance Inventory - INSQ: Inventario Nacional de Sustancias Químicas - NCI: National Chemical Inventory - ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. Page 18 of 18 Issue Date: 10/12/2021 Chemwatch: 4789-84 Version No: 4.1 Print Date: 04/06/2024 **NV Chemicals Pure Magic**